
Octavian Octavian Octavian Octavian MihaiMihaiMihaiMihai VasiloviciVasiloviciVasiloviciVasilovici

MSC ProjectMSC ProjectMSC ProjectMSC Project

Bournemouth Bournemouth Bournemouth Bournemouth University 2013University 2013University 2013University 2013

� Terrain using Continuous DistantTerrain using Continuous DistantTerrain using Continuous DistantTerrain using Continuous Distant----Dependent Dependent Dependent Dependent

Level of Detail Level of Detail Level of Detail Level of Detail

� Why is it needed ?
� Existing algorithms – a quick overview
� CDLOD – Strengths and Weaknesses
� CDLOD - Implementation
� Stereoscopy – a quick overview� Stereoscopy – a quick overview
� Stereoscopic pipeline
� A word about stereoscopic performance
� Instanced Cloud Reduction
� See it in action
� Conclusions
� Questions

Performance:16 FPS
Grid: 1024x1024

No LOD
Triangles: 8.388.608

Unusable for real-time

Performance:1200 FPS
Grid: 1024x1024

5 LOD Levels
Triangles: 56.576

More than perfect for real-time

Terrain using ClipMaps – Asirvatham A. et al. 2005 Terrain using CLOD – Ulrich T., 2002

Terrain using CDLOD – Strugar P., 2010

Strengths:

� GPU-based

� Easy Implementation and integration with other methods

� Can easily be extended with a streaming mechanism such as ROAM

� LOD Selection based on viewer position in 3D space (unlike ClipMaps alg.)

� No need for additional geometry for stitching gaps (unlike CLOD alg.)

� Continuous Morphing in Vertex Shader

� Bounding boxes used for quadtree partitioning require only 2 values: min and maxBounding boxes used for quadtree partitioning require only 2 values: min and max

Weaknesses:

� Can only select between 2 LOD levels at once:

� - limits the maximum viewing range or minimum quadtree depth;

� - increasing the LOD brake (viewing range) can fix the cracks that appear on very uneven
terrain, but at the cost of extra data to be rendered.

� - reducing the LOD levels can also fix this problem but makes the algorithm less effective

� Recursive algorithm* for LOD selection

� Still heavy memory bound

� Requires extra tuning for each dataset in order for the algorithm to be effective

� Implementation done in OpenGL, QT, NGL based on translation of
DirectX source code.
� Terrain generation as a pre-step and each LOD level saved in the
quadtree
� Terrain rendered as a series of triangle strips� Terrain rendered as a series of triangle strips
� Support for 8 LOD levels
� Support for any HeightMap texture (both greyscale or color)
� Grid size, grid scale, node size, texture map, LOD view distance
parameters fully exposed to the user via the Setup Wizard.
� Ability to Load and Save presets.
� Currently supports only square grids
� Heightmap texture needs to have the same resolution as the grid
for correct sampling

Quadtree and LOD levels – Strugar F., 2010

LOD levels as seen in the application. Three additional LOD levels

� Morphing:
◦ Values between 0 and 1 (no morph, full morph)

◦ Done in the vertex shader (for each vertex)

◦ A morph vertex is defined as a grid vertex having both indexes an odd number (Strugar F.,
2010)

◦ A no-morph vertex is defined as a grid vertex with indexes (i-i/2, j-j/2) (Strugar F., 2010)

� Implementation in GLSL:
◦ // Calculate the vertex position based on the VertexID and InstanceID

◦ int thisX = gl_VertexID % stride + baseX;

◦ int thisY = gl_InstanceID + gl_VertexID / stride + baseY;◦ int thisY = gl_InstanceID + gl_VertexID / stride + baseY;

◦ vec2 thisXY = vec2 (float (thisX), float (thisY)) * texScale * lodStep;

◦ // Calculate the morphing

◦ if (thisDist > mixStart)

◦ {

◦ //bitwise operator (and not)

◦ int evenX = thisX & ~1;

◦ int evenY = thisY & ~1;

◦ mixFactor = clamp ((thisDist - mixStart) / mixWidth, 0, 1);

◦ if ((evenX != thisX) || (evenY != thisY))

◦ {

◦ vec2 evenXY = vec2 (float (evenX), float (evenY)) * texScale * lodStep;

◦ thisXY = mix (thisXY, evenXY, mixFactor);

◦ thisZ = texture (heightTexture, thisXY + texBias).r;

◦ thisPosition = vec3 (mv * vec4 (vec3 (thisXY, thisZ) * scale, 1));
}

Continuous Morphing – Strugar F., 2010

Continuous Morphing as seen in the application

� Scene is rendered as Left and Right view with a
slight offset between

Left Eye Right Eye

Both Eyes

� Key concept: Depth
� Separation controls the how the depth of objects is perceived

Implementing Stereoscopic 3D in Your Applications. nVidia Corporation. 2010

� Key concept: Convergence
� Convergence controls the distance to zero Parallax Plane

Implementing Stereoscopic 3D in Your Applications. nVidia Corporation. 2010

� Key concept: Parallax
� Parallax is responsible for “Push-in” and “Pop-out” effects of objects:

� Objects closer than the zero Parallax plane will have a “Pop-out” effect from the screen

� Objects at zero Parallax will be at “screen level”

� Objects farther than the zero Parallax plane will have a “Push-in” effect in the screen

Implementing Stereoscopic 3D in Your Applications. nVidia Corporation. 2010

�Requires creation of a stereoscopic
context in the application
�Requires two virtual cameras
�Requires two Projection matrices
with an offset
�Each camera has an offset
equal to +-(Separation /2) from
the monoscopic camera location

Implementation done by
expanding the ngl::Camera() class
�Camera transformations are done
on the monoscopic camera to avoid
problems like eye inversion during
rotations
�Camera positions & Projections are
updated per frame
�Rendering is done using
QuadBuffering technique Mishra A., 2011.

� The scene must be rendered two times (with some
exceptions):

�For left eye

�For right eye

� Performance is theoretically cut by 50%

� In practice this is not always the case� In practice this is not always the case

� The performance cut can be remedied by using a dual-GPU
configuration

� Strongly dependent on hardware limitations and driver
implementation

� Behavior is different in forward and deferred rendering

� Does not employ artificial techniques like using the Depth
Buffer for object depth calculation

� Algorithm employed to simulate a real case scenario.

� Instanced Rendering

� Culling done in geometry shader

� Position of object done randomly (X, Z) and based on the
HeightMap information (Y)

In combination with stereoscopy greatly reduces the � In combination with stereoscopy greatly reduces the
framerate, close to a real case scenario

Screen Shots

Quadtree Traversal and LOD Selection

Screen Shots

LOD Selection based on Height

Screen Shots

LOD View

Screen Shots

Screenshots as seen in the application

Stereoscopic Rendering Live Demo

� Advantages:
� Possible to render real-time detailed terrains when

using a LOD system
� Huge Performance gain
�Predictable LOD system, with no need for additional

geometry to fix seams or gaps due to the continuous
morphing systemmorphing system

�Stereoscopy greatly improves the visualization quality

� Disadvantages:
�Algorithm must be tweaked for each dataset
�Highly dependent on memory allocation space
�Stereoscopy theoretically cuts the performance by

50%
�Hardware and driver bound

� Asirvatham A., and Hoppe H., 2005. GPU Gems 2. Addison-Wesley Professional

� Bourke P., 1999. 3D Stereo Rendering Using OpenGL (and GLUT). Available from:
ftp://ftp.sgi.com/opengl/contrib/kschwarz/GLUT_INTRO/SOURCE/PBOURKE/index.html [Last
accessed August 2013]

� Cervin A., 2012. Adaptive Hardware-accelerated Terrain Tessellation. Available from:
http://dice.se/wp-content/uploads/adaptive_terrain_tessellation.pdf [Last accessed August
2013]

� Gateau S. and Nash S., 2010. Implementing Stereoscopic 3D in Your Applications. Nvidia
Corportation. Available from: Corportation. Available from:
http://www.nvidia.com/content/GTC2010/pdfs/2010_GTC2010.pdf [Last accessed August
2013]

� GeForce Forums., 2013. [Test Request]Stereo 3D OpenGL application. Available from:

� https://forums.geforce.com/default/topic/572432/3d-vision/-test-request-stereo-3d-
opengl-application/ [Last accessed August 2013]

� Macey J., 2012. Operator overloading and Dynamic Data Structures. Available from:
http://nccastaff.bournemouth.ac.uk/jmacey/ASD/slides/Lecture4OperatorsandDynamicDS.pdf
[Last accessed August 2013]

� Mishra A., 2011. Rendering 3D Anaglyph in OpenGL. Available from:
http://quiescentspark.blogspot.co.uk/2011/05/rendering-3d-anaglyph-in-opengl.html [Last
accessed August 2013]

� Rakos D., 2010. Instance culling using geometry shaders. Available from:
http://rastergrid.com/blog/2010/02/instance-culling-using-geometry-shaders/ [Last
accessed August 2013]

� Strugar F., 2010. Continuous Distance-Dependent Level of Detail for Rendering Heightmaps
(CDLOD). Available from: http://www.vertexasylum.com/downloads/cdlod/cdlod_latest.pdf
[Last accessed August 2013]

� Ulrich T., 2002. Rendering Massive Terrains using Chunked Level of Detail Control. Available
from: http://tulrich.com/geekstuff/sig-notes.pdf [Last accessed August 2013]

Wloka M., 2004. Optimizing the Graphics Pipeline. Nvidia Corporation. Available from: � Wloka M., 2004. Optimizing the Graphics Pipeline. Nvidia Corporation. Available from:
https://developer.nvidia.com/sites/default/files/akamai/gamedev/docs/EG_04_OptimizingGPU
Pipeline.pdf [Last accessed August 2013]

� Wolfgang E., and Mistal B., 2013. GPU Terrain Subdivision and Tessellation.GPU Pro 4. A K
Peters/ CRC Press

Any questions ?Any questions ?

THANK YOU !THANK YOU !

