Cloth Simulation Report

Octavian Mihai Vasilovici

9 May 2013

Bournemouth University



1. Summary

This document aims at explaining the methods @ecitb be used in creating a Cloth
simulation program with the help of the NGL libratywill focus on showing the methods, design,
algorithms and decisions that were made. It wihigist of research, the theoretical algorithms and
methods selected for the implementation, how aedeawbacks are planned to be resolved and the

features that are going to be added later.

2. Introduction

The principle of simulating cloth was first intrazkd in 1930 (Pierce, 1937), but only in
1980’s the graphics community took an interesthi@ subject (House, 1990). From this point
onward the subject of simulating cloth has becorpegular topic of research. The main scope is
to have proper looking cloth that deforms and ewthe forces applied to it. Cloth simulation it
is currently used both in the movie industry anthpater games industry (real time simulation).
Currently in the game industry cloth simulationused a lot. Currently there are a lot of
physically-based algorithms to produce nice lookiegult, but their use in the video games
industry is low due to the fact that they are jacbmplicated and computationally expensive.
Precise simulation methods exist and can be boddwen the engineering, however in video
games and interactive use, accuracy is not the maah, but rather the believability of the
simulation (Jakobsen, 2001). The methods describgter are meant for interactive use and
they do not try to simulate how a piece of clothuldoperform in the real world, instead it

focuses on the approach selected to simulate eviablie piece of cloth.

3. The Spring Mass model
The most common system of simulating cloth is tpeirf§ Mass Model. This model uses the
concept of masses that are simulated by usingcpestiwhich are connected together in a grid by
springs. The typical representation of such a syste composed of: three type of springs (or
constraints) namely stretch, shear and bend thatem each mass point to its neighbors. All these

constraints give the cloth its behavior.



»
. ‘ ‘ Cloth
. Veriex

Structura

Sprnngs

v v v

The interconnection of cloth springgeff Lander, 1999

Therefore, the simulation of the cloth comes doawmbve these masses in a realistic way.
The forces that are applied to the cloth fall itvto categoriesinternal andexternal.
The internal force appears due to the tensionsdsivihe constraints and can be expressed
using Hooke’s law of elasticity:
F=-k*x
- k is spring constant.
- X is the displacement in the spring from its reagl# (the distance between two neighbor particles

in rest state).

Another component of the internal force is the demgpcoefficient. This coefficient is
responsible for “bringing” the system back to tlestrstate. Without it, the springs would oscillate
infinitely.

F =-c*v
-c is the damping coefficient.

-v is the velocity of the particle.

The final equation aihternal forces can then be written as:

F = -k*x —c*v

Theexternal forcesare basically composed of two forces: gravity andther external force
such as wind.
In order to represent gravity we must apply Newsasecond law:
G=m*g
- mis the mass

- g is gravitational acceleration



Wind is another external force that can be appieethe cloth. Rather than being applied to each
particle that is part of the cloth, the wind forieapplied to a face created by three neighbor
particles:

F= c*(n dot d)*n
- c is the wind strength
- d is the wind direction

- n is the normal of the face

Wind reaction

YWind

Force

Wind simulation of a mesh triangldtugo Elias

Adding all these forces will create the motion loé tparticles in the cloth, which in their turn will
start adding tension in the constraints by creatixgansions and contractions of the springs.

In order to have a simulation we must make théiggamrmove. In order to calculate where a
particle will be located in time we need to userdegration method.

As an integration method the so-calledetlet” method was selected. Since a piece of cloth
is basically composed of particles and constraitiits, typical implementation would be for each
particle to have two main variables: positioand velocity (Jakobsen, 2001).

The integration method would then state that thve pesition and velocity would be:

X'=X+vVv-At
vi=v+4+a At
- At is the timestep
-a is the acceleration computed from Newton’s lam*¥a (a=f/m)

(Euler Integration scheme)

In the above representation the velocity vectorlmamemoved altogether to give birth to the “Vérlet
integration scheme. By not representing each paigosition and velocity, but instead using facle
particle a current positiom and a previous positior’, while keeping a fixed time step, the integration

becomes:



x'=2x—x"+a- At?
x*=x

(Verlet Integration scheme)

The main benefit of this method is its stabililakobsen, 200XKjnce the velocity is implicitly given and
therefore harder for the velocity and position & gut of sync. It works since:

2%-X' = X + (X-X)

- X is the current position
- X' is the previous position
- x-X'is the approximation of the current velocitlisfance traveled from last time step)

- x™is the new position

4. Implementation

The selected implementation was first described’hhigmas Jakobsen in the article Advanced Character
Physics in 2001. The algorithm was developed byriteractive and was first time used in the videmga
Hitman: Codename 47.

The most important thing about this algorithm l& tway springs (constrains) are implemented.
Instead of using springs with spring coefficiertie tlgorithm uses stiff constrains that can be ssereally
hard springgJakobsen, 2001).

The algorithm follows these steps:

- For each vertex a particle is created, with thestraint rest length being the initial distance hbesgw

two particles

- The constraints are then simply handled by usirgetaxation method over all the springs.

While most of the time only one iteration over gmnstrains is necessary to obtain good looking atians
(Jakobsen, 2001 the implanted code each constraint is actuslysfied 3 times to try and prevent some
of the problems that could appear in some cases.

The time usage depends mostly on the N squareopastitions and the N divisions performed, where
N is the number of edges in the cloth mesh:

Vector3 delta = x2-x1;
float deltalength = sqgrt(delta*delta);
float diff=(deltalength-c.restlength)/deltalehgt
x1 += delta*0.5*diff;
x2 -= delta*0.5*diff;
(Pseudo-code for constraint calculation - Thodalsobsen, 2001



The algorithm can be further optimized by removthg square root operation. Since we already
know that the result of the square root operatioraicertain constraint should be the rest lengtihat
particular constraint, we can use this fact to apjpnate the square root function. This is done sipgithe ¥
order Taylor expansion on all the particles thatsarrounding the square rest length (Fakobsen, 2001)

The algorithm than becomes:

Vector3 delta = x2-x1;

Delta *= restlength * restlength / (delta* deltaestlength * restlength) -0.5
x1 += delta*0.5*diff;

X2 -= delta*0.5*diff;

(Pseudo-code for constraint calculation - Thodalsobsen, 2001

For each frame the operations are now down to Midivs which hugely increase the algorithm efficign

4.1Relaxation

The most common model approach for cloth is basedising a simple system of interconnected
constraints and particles. However it is not alwapsal to solve the corresponding differentialuedjons:
strong springs lead to stiff systems of equatidvad tn their turn can lead to system instabilityilehweak
springs lead to rubber looking cloth.

However if the springs are left to be stiff to iifiy the system suddenly becomes solvable in destab
easy and fast wafdakobsen, 2001Even if the particles might be placed correctlyhie initial phase after
some integration steps the distance between thghtinécome invalid. In order to obtain the cordistance
again, the particles are moved by using a secorsddrgf solutions:

[x2 - x1| = rest_length

This is done pulling or pushing the particles adrayn each other.

3

: \ .
: \

‘\

Dist. too large Correct distance Dist. too small

Fixing invalid distance by moving the particle -

In order to obtain a good representation in théstoh detection the initial set of solutions (likeoving the
particles on the boundaries of a sphere) and theritbed secondary set of solutions must be solvae tan
once in order for it to converge to the expectddtem. This method is callegtlaxation or Jacobi or Gauss-

Seidel iteration, based on implementatiQlakobsen, 2001)The number of iterations depends on the



simulation and the amount of motion in the syst®ased on testing, the number of iterations oveheac

constraint found to suffice a good result is 3yentioned above.

4.2 Collisions
Four methods for collisions were used in the sititea
- Plane collision
- Ball collision
- Box collision

- Brute force self collision check using an octoé®ounding boxes.

4.2.1 Plane collision

The plane collision is the easiest collision detecimethod of all: Every time a particle moves a
check is being made on the particle position agairesposition of the plane. If the particle pamitiat t+1 is
intersecting with the plane then the particle isvatbat the position declared by the plane (in otdestick on

the plane surface).

4.2.2 Ball collision

The method consists of checking every time a gartioves against the radius of the ball.

Ball collision -Jeff Lander, 1999
If the particle intersects the ball the collisi@nsblved by moving the patrticle out of the ballngjahe
vector from the ball’s center to the particle takinto consideration that the distance is equah it ball's
radius.(Mosegaard, 2009)

Ball collision.



4.2.3 Box collision

Handling collisions with a box is a bit trickier. Aox basically is created by 4 planes. The
implementation used is as follows: Every time aiplar moves it is checked to see if it is inside tox. If it
is then we need to detect on which side of thethexcollision happens. Once detected, the checlts the
other sides are not done since a particle caniaotdysect one face at a time and the particle iga@n the

surface of the box.

Box collision -Jeff Lander, 1999

In practice, this implementation presented somélpros. Using the above mentioned methods of
satisfying constraints using relaxation moving plaeticle to the plane’s position doesn’t work sitice string
is relaxed afterwards resulting in the cloth simphgsing through the box. Two quick fixed have bieend:
the first fix is to make the make the particle umadde therefore stopping the integration processtfdhe
second one consists of stopping the integrationgae step, when the collision is detected. Howetrex
second method is highly dependent on the selettexidtep. If a high value is selected for the tstep the
particle tends to “pop” producing some visually leasing effects.

Cloth on top of a box.



4.2.4 Self collision using an octree

While this is more of a brute force method andrdt&fly not the recommended method this method
was selected from pure curiosity. Partitioning fpace in eight parts is also problematic especiahgn
opposite corners want to collide, in which cassiit not work. Another problem with this implemetitan is
the sphere radius allocated for each particle.rfdius is too big the cloth will simply do not neosgince the

cloth is in “collision” with itself even when thensulation starts. | did manage to obtain some m@&wilts

with it however.

Self-collision disabled. Selflibn enabled.

Initially this method was meant to be used for tngaan Axis Aligned Bounding Box tree for impomgin

objects, but was repurposed later for this purpose.

4.3 Pinning points

Pinning points is a trivial matter. When the cladhoeing created the particles that we don’t want t

integrate (move in time) are set. The result ikanging” cloth.

Cloth pined at two corners. Simulation with din



5. Class diagram

The code was created using the NGL library for gregd manipulation. The class diagram is as

follows:

: Bost. m_collisonRchs; oz

The implementation of the described algorithm waadentaking advantage of NGL for hardware
accelerated graphics, Qt for the GUI interface rideo to allow customizations. While the simulatdfens
some defined presets for various types of collisimnulation, each preset can be manually tweakextdar
to achieve different behaviors. Based on the alaescribed algorithm the simulator offers some very
interesting features: it supports a big numbepatticles and is meant for real-time rendering. /e
results are very interesting and appealing visyalig simulator can be further improved by optimigithe
current methods and adding new features:

- Currently a framebuffer object is created everyoadcand destroyed after the rendering. This could
be improved but creating and populating the frarffebwvith date during initialization and later just
manipulating the data from the framebuffer.

- Fixing a problem when sometimes the face normasat calculated correctly for shading.

- Implement a method for subdiving the mesh geontetnbtain even more realistic results.

- Implement cloth to cloth collision

- Implement collision with custom loaded mesh usingAABB tree

- Implement adding textures to the cloth.

- Implement a friction method for making the clotht fedl from the collided object rather than pin the

particles on contact.



6. References

- Baraff D., Witkin A., Large Steps in Cloth Simulation, COMPUTER GRAPHICS Proceedings, Annual Conference
Series, 1998 (SIGGRAPH 98, Orlando, July 19-24).

- Elias H., Cloths. Available from: http://freespace.virgin.net/hugo.elias/models/m_cloth.htm [Last accessed
09.05.2013]

- Fiedler G.,Spring PhysicdAvailable from: http://gafferongames.com/game-physics/spring-physics/ [Last
accessed 09.05.2013]

- House, D.H. and Breen, D.E., 20@oth Modelling and AnimatiorA K Peters.

- Jakobsen T Advanced Character Physiosvailable fromhttp://www.pagines.mal.upc.edu
/~susin/files/AdvancedCharacterPhysics.pdf [Last accessed 09.05.2013]

- Jakobsen T., The making of "Hitman: Codename 47" Available from: http://lwww-
scf.usc.edu/~gamedev/assets/AdvancedPhysics.pgtdtaessed 09.05.2013]

- Lander J.,, Devil in the Blue Faceted Dress: Real-time Cloth Animation. Available from:
http://www.darwin3d.com/gamedev/articles/col0599.pdf[Last accessed 09.05.2013]

- Pierce, F. TOn the Geometry of Cloth Structuta Journal of the Textile Institute, 28: T45 —7T9937.



